Sugarcane Fertilizer Recommendations

R. Johnson, H. Viator, B. Legendre

Essential Nutrients

- Nitrogen
- Phosphorous
- Potassium
- Calcium
- Sulfur
- Magnesium

Micronutrients

Zinc, Boron, Manganese,

Molybdenum, Chlorine,

Copper, Iron

Phosphorus (P₂O₅)

- About 1 lb is removed per ton of cane
- Availability depends on pH and soil type
- Soil Test
 Recommendations:

Soil Test	Plant	Stubble
Very Low	50	60
Low	45	50
Med.	40	40
High	0	0
Very High	0	0

Potassium (K₂O)

- About 3 lbs removed per ton of cane
- Natural abundance depends on soil type
- Soil Test
 Recommendations:

Soil test	Plant	Stubble		
Very Low	130	140		
Low	110	120		
Medium	80	80		
High	0	0		
Very High	0	0		

Sulfur (S)

- Stubble Cane more likely to respond
- Response more likely on heavy soils
- Apply 24 lbs Sulfur per acre if recommended by soil test.

Managing Soil Acidity

R. Johnson and E.P. Richard, Jr. USDA-ARS-SRRC Sugarcane Research Unit Houma, LA USA

Why should we apply lime?

- To reduce aluminum and manganese toxicity.
- To correct Magnesium Deficiencies (Dolomitic Lime, i.e. MgCO₃ vs. CaCO₃).
- To enhance the activity of soil microorganisms.
- To improve the activity of soil applied herbicides.
- To improve fertilizer use efficiency by maximizing nutrient availability.

Effect of Soil pH on Nutrient Availability

Why does the soil pH decrease?

 Application of ammonia or urea-based nitrogen and phosphorus fertilizers will decrease soil pH levels over time (32% UAN, ammonia nitrate, urea, DAP).

It takes 55 lbs of pure CaCO₃ to neutralize the acidity from 100 pounds of 32% UAN and 70 pounds of CaCO₃ to neutralize 100 pounds of DAP.

 Soil pH will also decrease due to crop uptake of K Ca and Mg. Hydrogen (H) will replace these cations on the soil exchange surface.

When and how should I apply lime?

Lime when:

- Soil pH < 5.8 on sandy loam & silt loam soils.
- Soil pH < 5.2 on clay loam & clay soils.
- Broadcast lime to fallow fields, or in fall or winter.
- The lime rate should be based on soil test and ideally should raise soil pH to 6.5.
- Apply lime after precision leveling.
- Variable rate lime application may more accurately target problem pH areas and ultimately save money.

How long will it take for the lime to work?

- The biggest change will occur within 3-4 months. The pH may continue to increase for 6-12 months.
- Smaller lime particles, will react more quickly than larger particles. Larger particles will not change soil pH as quickly, but may provide pH control (buffering capacity) over a longer period of time.

USDA Lime Test Results, Naquin Farms 2002-2004, LCP 85-384.

Treatment	Cane T/A	TRS lb/T	Sugar Ib/A	Cane T/A	TRS lb/T	Sugar Ib/A	Cane T/A	TRS lb/T	Sugar Ib/A
	Plant			1 st Stubble			2 nd Stubble		
No Lime	27.1	199.8	5456	33.2	218.0	7219	24.0	241.3	5795
Conv.* Lime	34.0	199.8	6833	36.3	221.0	8031	28.0	236.6	6600
Increase	+6.9	0	+1377	+3.1	+3.0	+812	+4.0	-4.7	+805
LSD (5%)	2.8	NS	622	2.8	5.2	483	1.4	4.6	351

3 year total = 2,994 lbs sugar and 14 tons of cane. Return ~ \$300.00 1 ton of lime (2002) = \$24.50. Return on investment ~1200% (-appl. costs) (Conventional Lime = uniform broadcast application at 1 ton/acre.)

Nitrogen Fertilizer Research

R. Johnson, H. Viator, C. Kennedy, A. Arceneaux

USDA, Nitrogen Fertilizer Experiments - 2007

Locations:

- Rosedale Plantation L97-128 November 6, 2007
- Naquin Farms HoCP 96-540 November 26, 2007
- Laurel Valley Ho 95-988 December 4, 2007
- St. Louis Planting CP 89-2143 December 6, 2007

Treatments:

- Plant cane, 1st stubble
- 3 rows x 50-ft, 6 reps
- 0, 40, 80, 120, 160 lbs N/A (32% UAN)

LSU Nitrogen Fertilizer Experiments

- Ronald Hebert, Jr., Patoutville, LA
 - L 99-226, L 99-233, 1st stubble.
 - 3 rows x 30-ft, 6 reps
 - 40, 80, 160, 240 lbs N/A (32% UAN)
- LSU, St. Gabriel, LA
 - LCP 85-384, Ho 95-988, L 97-128, Plant-cane, 1st
 Stubble, 2nd stubble (Harvest November 8, 2007)
 - L 99-226, HoCP 96-540, LCP 85-384, Plant-cane (Harvest November 19, 2007)
 - 4 rows x 46-ft, (2 center rows for harvest), 4 reps
 - 0, 40, 80, 120 lbs N/A (32% UAN)

Varietal Response to Nitrogen Fertilizer (Sugar/A) Plant Cane

Varietal Response to Nitrogen Fertilzier (Sugar/A) 1st Stubble

Effect of Nitrogen Fertilzier on Sugar Yields/A (Averaged over Variety and Crop)

Varietal Response to Nitrogen Fertilizer (Sugar/A) 1st Stubble

Varietal Response to Nitrogen Fertilizer (Sugar/A) Plant Cane, St. Gabriel

Varietal Response to Nitrogen Fertilizer (Sugar/A) 1st Stubble, St. Gabriel

Varietal Response to Nitrogen Fertilizer (Sugar/A) 2nd Stubble, St. Gabriel

Effect of Nitrogen Fertilizer on Sugar Yields/A, Plant Cane, St. Gabriel

Summary of Nitrogen Studies

- Optimum N Rate 80 lb N/A
 Plant cane and 1st stubble
- Optimum N Rate 120 lb N/A 2nd stubble

Nitrogen Fertilizer Recommendations for 2008

• Plant cane: light soils: Old 80-100 lb

New 60-80 lb N/A

• Plant cane: heavy soils: Old 100-120 lb

New 80-100 lb N/A

• Stubble cane: light soils: Old 120-140 lb N/A

New 80-100 lb N/A

Stubble cane: heavy soils: Old 140-160 lb N/A

New 100-120 lb N/A

- Old recommendations based on ~ 300 tests over 26 year period (1953-1979)
 when anhydrous ammonia was the primary nitrogen fertilizer used.
- New recommendations based on recent tests (~ 28) in which UAN 32% was the primary nitrogen fertilizer used.

